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Exact method for numerically analyzing a model of local denaturation
in superhelically stressed DNA
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Local denaturation, the separation at specific sites of the two strands comprising the DNA double helix, is
one of the most fundamental processes in biology, required to allow the base sequence to be read both in DNA
transcription and in replication. In living organisms this process can be mediated by enzymes which regulate
the amount of superhelical stress imposed on the DNA. We present a numerically exact technique for analyzing
a model of denaturation in superhelically stressed DNA. This approach is capable of predicting the locations
and extents of transition in circular superhelical DNA molecules of kilobase lengths and specified base pair
sequences. It can also be used for closed loops of DNA which are typically foundin vivo to be kilobases long.
The analytic method consists of an integration over the DNA twist degrees of freedom followed by the
introduction of auxiliary variables to decouple the remaining degrees of freedom, which allows the use of the
transfer matrix method. The algorithm implementing our technique requiresO(N2) operations andO(N)
memory to analyze a DNA domain containingN base pairs. However, to analyze kilobase length DNA
molecules it must be implemented in high precision floating point arithmetic. An accelerated algorithm is
constructed by imposing an upper boundM on the number of base pairs that can simultaneously denature in a
state. This accelerated algorithm requiresO(MN) operations, and has an analytically bounded error. Sample
calculations show that it achieves high accuracy~greater than 15 decimal digits! with relatively small values of
M (M,0.05N) for kilobase length molecules under physiologically relevant conditions. Calculations are
performed on the superhelical pBR322 DNA sequence to test the accuracy of the method. With no free
parameters in the model, the locations and extents of local denaturation predicted by this analysis are in
quantitatively precise agreement within vitro experimental measurements. Calculations performed on the
fructose-1,6-bisphosphatase gene sequence from yeast show that this approach can also accurately treatin vivo
denaturation.@S1063-651X~99!06003-1#

PACS number~s!: 87.15.By, 05.90.1m
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INTRODUCTION

Unconstrained linear DNA molecules in solution at phy
ological temperatures and ionic conditions adopt the w
known Watson-Crick B-form structure, a right hande
double helix conformation. However, DNA can occur in se
eral other conformations. The biologically most importa
alternate conformation is the locally denatured~i.e., strand-
separated! state, in which the base pairing between the t
strands of theB-form DNA duplex is locally disrupted. Be
cause local denaturation is an essential step in both trans
tion and replication, the two central functions of DNA, i
occurrence must be stringently controlledin vivo. One means
of exerting this control involves topological regulation of th
unwinding torsional stresses that are imposed on the D
@1#.

DNA within living systems is organized into topologica
domains, typically several kilobases in length, consisting
ther of circular molecules or of closed loops within larg
molecules@2#. The topological constraint on a closed-loo
domain is precisely equivalent to that on a circular molecu
In either case the linking numberL of the domain is fixed.L
is the number of times either strand of the DNA lin
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through the closed circle formed by the other strand. Equi
lently, L is the total number of turns either strand of the DN
makes about the central axis curve of the domain, coun
according to sign, when that central axis curve is planar. T
linking number L is a global topological invariant of the
domain: so long as both strands of the DNA remain conti
ous, the value ofL cannot change. However, enzymes c
alter the linking numbers of domains by processes involv
transient strand breakage and relinking@3#. In vivo, these
enzymes typically act~often in concert with other processe!
to decrease the linking numberL below the valueLo charac-
teristic of the unstressedB-form double helix@3,4#. The re-
sulting ~negative! linking differencea5L2Lo,0 imposes
untwisting torsional stresses on the DNA domain involve
placing it in a ~negatively! superhelical state. The domai
can accommodate this condition in two ways. First, t
B-form helix can bend and twist, deformations that requ
energy. Second, local regions of the DNA domain can
dergo conformational transitions, such as denaturation,
decrease the helicity of the sites involved. These transiti
accommodate part of the imposed linking differencea,
which allows the rest of the domain to relax by a correspo
ing amount. Denaturation will be energetically favored wh
the energy of deformation relieved by this partial relaxati
exceeds the cost of the conformational transition@5#. The
localization of denaturation at specific sites within a dom
3408 ©1999 The American Physical Society
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results from the sequence dependence of the denatur
energy. Under a wide variety of environmental conditionsAT
base pairs on average require less free energy to sep
than doGC pairs, with significant modulation due to ne
neighbor effects@6–9#. Hence, sites of local denaturatio
tend to be concentrated atAT-rich regions within a nega
tively superhelical domain.

The global superhelical constraint of fixed linking numb
L effectively couples together the conformational states of
the base pairs within a DNA domain. A transition at any o
site alters its helical twist, which changes the distribution
the linking differencea throughout the domain, and thereb
alters the stresses experienced by all other base pairs.
effective global coupling can lead to qualitatively entire
different types of transition behaviors than occur in the th
mal denaturation of unconstrained polymers@10,11#. In un-
stressed linear polymers undergoing thermal denatura
the probability of transition of each monomer typically i
creases monotonically with temperature. However, the im
sition of negative superhelical on a DNA domain can lead
much more complex transition behavior. For example,
probability of denaturation of individual base pairs need
increase monotonically with the denaturing constrainta. In-
stead, as this negative superhelicity becomes more extr
denaturation at new sites may be coupled to reversions b
to B form ~i.e., rejoining! of sites that had been denature
@1#. Moreover, whereas local changes of base sequence
at most local effects on thermally driven transitions@12–14#,
in stress-induced denaturation small local sequence a
ations can have global consequences. For example, del
of a 16-bp~base pair! region in a 4-kb circular DNA com-
pletely changes the locations and extents of superhelica
naturation throughout the molecule@15,16#.

Stress-induced local denaturation has been shown ex
mentally to be involved in several important biological pr
cesses. The unique replication origin in theE. coli genome
contains a stress-destabilized site located at a specific p
tion relative to other markers@15#. Sequences that have bee
modified in a way that preserves the susceptibility of this s
to superhelical denaturation retain theirin vivo activity,
while mutations that either degrade this susceptibility
move the position of the denaturing region by as few as
base pairs destroy the function of the replication origin.
other sequence specificity is observed around this posit
Stress-induced denaturation also plays several known r
in DNA transcription. For example, expression of thec-myc
oncogene is regulated in part by the upstream far upstr
sequence element~FUSE! region, which is denaturedin vivo
under conditions where this gene is transcriptionally act
@17#. Transcription ofc-myc requires binding of the FUSE
binding protein ~FBP! regulatory protein to the unpaire
DNA strands at the FUSE site. In a second example, exp
sion of thei l vPG operon inE. coli is enhanced by binding o
integration host factor~IHF! to a site 90 base pairs upstrea
of the transcription start site. However, this enhancem
only occurs when the negative superhelicity of the DNA
sufficient to drive denaturation of the region abutting the IH
binding site. Under these circumstances IHF binding for
this site to revert toB form, which causes the next mo
easily destabilized region, around the transcription start s
to denature@18#. Stress-induced denaturation also has b
ion
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implicated in the termination of transcription@19#. Sequence
alterations that degrade the susceptibility to denature wi
the 38 terminal flank of the yeast FBP1 gene decrease
frequency of correct terminationin vivo. Stress-denaturable
sites are involved in the binding of DNA to other cellula
structures. These include sites where the DNA attaches to
chromosomal matrix@20,21# as well as the centromere re
gion, where the DNA binds to the cellular apparatus th
separates the two copies of a chromosome at cell divis
@22#.

Local denaturation is the most extreme form of stre
induced DNA duplex destabilization. However, less extre
forms also may be biologically important. A process requ
ing local separation of the duplex strands may be contro
by proteins that can contribute some energy to this unpai
event, but not enough to drive it unless the site involved
already marginally destabilized. Such sites may become
tive when stresses are imposed on the DNA that decreas
energy required for their local denaturation without necess
ily causing complete opening. For this reason it is also i
portant to understand how imposed stresses affect the in
mental energy required to denature individual sites withi
DNA sequence.

Several approximate methods have been develope
analyze conformational transitions in superhelical DNA m
ecules. The first theoretical treatment demonstrated that l
denaturation can be energetically favored in molecules ex
riencing untwisting torsional stresses@23#. It performed a
simple two-state analysis in which only the competition b
tween the untransformed state and the single energetic
most favored denatured state was considered. Therea
three approximate statistical mechanical methods were
veloped to treat this problem.

The first of these approaches was a modification of
standard method to analyze helix-coil transitions in unc
strained linear molecules@24,25#. DNA that is circular was
analyzed as though it were linear, with one unopenable b
pair added to each end to reduce end effects. Then an en
renormalization step was performed to account appro
mately for the effects of the superhelical constraint. T
approach did not impose the correct topological condition
the DNA. It also incorrectly assumed that sites of denat
ation were torsionally undeformable, so that no part of
imposed linking differencea could be absorbed by inter
strand twisting at the denatured sites. Single stranded D
actually is highly flexible, so that large amounts of the im
posed linking difference can be absorbed by such twistin
little cost in energy@26#. These oversimplifications severe
limited the accuracy and utility of this method. Recently th
approach has been extended by developing a more sop
cated self-consistent renormalization technique@27#.

A second approximate analytic method has been de
oped that imposes the correct topological condition on
DNA domain and includes the torsional deformability of th
unpaired regions@5,16#. In this approach an energy thresho
u is specified, and all states of denaturation are found wh
energies exceed that of the minimum energy state by
more than this threshold amount. The cumulative effect of
states whose energies do not satisfy this threshold cond
is estimated by a density of states calculation. From t
information an approximate partition function is constructe
and approximate ensemble average values of important
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rameters are calculated. These include both the denatur
probability and the destabilization energy of each base
in the DNA sequence. The accuracy of this method increa
as the energy thresholdu is raised, although the number o
included states, and hence also the computation time, g
approximately exponentially. This technique has inter
controls that allow the user to achieve a specified leve
accuracy by setting the energy threshold appropriat
Sample calculations show that reasonable accuracy can
ally be achieved using moderate thresholds, for which
algorithm implementing this approximate method execu
efficiently.

Extensive calculations have shown that the predictions
this approximate method are in close quantitative agreem
with experimental results@16#. Experimentally determined
energy parameter values are used in these calculation
they have no free parameters. However, comparisons
experiments show that they correctly predict the sites
extents of denaturation as functions of the imposed link
difference, as well as the substantial effects on transi
behavior that can result from even modest base sequ
modifications. The close accord with experiment achieved
this method has enabled its use to predict the stress-ind
destabilization properties of DNA sequences for which
perimental information is not available@1,28#.

Despite its successes, this approximate method has
eral shortcomings. It treats denaturation as copolymeric, w
one separation energy ascribed toAT base pairs and anothe
to GC pairs. As presently constructed it cannot handle m
detailed transition energies, such as arise from the influe
of near neighbor base pair identities, chemical modificat
of bases, bound ligands, abasic sites, pyrimidine dimers
other molecular lesions. All of these local alterations
DNA are known to occurin vivo, and all can have a variet
of important biological effects@29–33#. This method would
also be difficult to extend to analyze competitions betwe
local denaturation and other types of transitions in topolo
cally constrained DNA molecules. And for technical reaso
it cannot handle cases where the low energy states con
four or more distinct sites of simultaneous denaturation,
can occur in very long molecules (N.15 000 bp) or at high
temperatures.

The third method that was developed to analyze con
mational transitions in superhelical DNA is a generaliz
Monte Carlo sampling technique@34#. This approach can
treat some of the special cases that neither of the previo
described methods could handle, such as high tempera
and very long molecules. Also, it can be easily extended
treat multiple competing transitions. However, it is difficu
to determine the frequency of occurrence of high ene
states accurately using Monte Carlo sampling, so this met
can estimate the destabilization energies of only the m
strongly destabilized base pairs. It is comparatively slow
execute, and its accuracy in calculating many quantitie
often less than that achieved by alternative methods.
these reasons Monte Carlo is the method of choice onl
cases where no alternative approach is feasible.

In this paper we present a numerically exact technique
calculate the equilibrium properties of the denaturat
~strand separation! transition in circular superhelical DNA
molecules of specified base sequence and kilobase len
ion
ir
es

w
l
f

y.
su-
e
s

f
nt

so
th
d
g
n
ce
y
ed
-

ev-
th

e
ce
n
or
f

n
i-
s
ain
s

r-

ly
res
o

y
od
st
o
is
or
in

to
n

th.

This approach has several advantages over its predeces
It imposes the correct topological constraint on the DN
domain, it can treat any dependence of base pair separa
energies on base sequence, and it can handle many situa
which other methods find intractable. These include la
numbers of simultaneously open regions, high temperatu
near neighbor effects, and the presence of chemical mo
cations such as abasic sites, methylated bases, lesion
adducts. It explicitly treats fluctuations of interstrand twis
ing within denatured regions. Some earlier treatments
nored this phenomenon entirely@24,25#, while others as-
sumed these torsional deformations occurred at a mecha
equilibrium configuration of minimum energy@5,16,23,27#.
The exact method also can be extended to treat competit
between denaturation and other types of transitions. As
exact contributions from all states are included, the accur
of the method is limited only by its computational impleme
tation. We also discuss an accelerated approximate im
mentation of the algorithm with analytic error bounds whi
can provide a speed-up of about an order of magnitude w
retaining high accuracy.

DERIVATION OF THE METHOD

‘‘Effective Hamiltonian’’ and free energy considerations

We consider a closed circular DNA molecule containi
N base pairs, on which a linking differencea has been im-
posed. Each base pair is regarded as being susceptib
transition to an alternative secondary structure~i.e., different
helical structure and/or separation of the strands of the
plex!. Here the alternative secondary structure is assume
be local denaturation~strand separation!, although other pos-
sibilities can be treated with the same formalism. We w
describe each state available to the DNA molecule, and
cribe an energy to that state.

We explicitly model only the DNA molecule itself. How
ever, because the energy parameters used as inputs int
model have been determined fromin vitro experiments, they
implicitly include the effects of solvation, ionic conditions
and other environmental factors. The resulting ‘‘effecti
Hamiltonian’’ therefore implicitly incorporates a dependen
on these environmental conditions.

More generally, consider a HamiltonianH0(xW ,yW ), where
xW refers to the DNA degrees of freedom which will be e
plicitly considered, andyW refers to any other DNA degrees o
freedom as well as to the environmental degrees of freed
The constant temperature and pressure partition functionZ of
the DNA plus environment@35# is then given by

Z5TrxW ,yW e2bH0~xW ,yW ! ~1!

with the Gibbs free energy

G5S 2
1

b D ln~Z!5S 2
1

b D ln@TrxW ,yW e2bH0~xW ,yW !#. ~2!

Here, TrxW ,yW refers to sums or integrals overxW andyW as appro-
priate andb51/(kBT), where kB is Boltzmann’s constan
andT is the absolute temperature. Equation~1! can also be
written in the form
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Z5TrxW e2bH~xW !, ~3!

where

H~xW !5S 2
1

b D ln@TryW e2bH0~xW ,yW !#, ~4!

giving

e2bH~xW !5TryW e2bH0~xW ,yW !. ~5!

Because of the form of Eq.~5!, H(xW ) is sometimes consid
ered to refer to the ‘‘free energy’’ of a particular systemA
plus its environmentB, for a fixed configuration of that sys
temA. Alternatively, one can considerH(xW ) as an ‘‘effective
Hamiltonian,’’ with interactions between thexW degrees of
freedom renormalized by the environment~and possibly tem-
perature dependent!. We will primarily use the terminology
‘‘effective Hamiltonian’’ and ‘‘energy’’ in this paper.

For a quantityO which depends only upon thexW degrees
of freedom@O5O(xW )#, the expectation value is given by

^O&5
TrxW ,yW$O~xW !e2bH0~xW ,yW !%

TrxW ,yW$e
2bH0~xW ,yW !%

5
TrxW$O~xW !TryW@e2bH0~xW ,yW !#%

TrxW$TryW@e2bH0~xW ,yW !#%

5
TrxW$O~xW !e2bH~xW !%

TrxW$e
2bH~xW !%

. ~6!

Thus, as long as an effective HamiltonianH(xW ) is used, ex-
pectation values can be calculated as usual. This is the
mal basis for the procedure we will follow.

States and their energies

In each state of the DNA molecule the linking differen
a is partitioned among three factors. First, the second
structure is specified by describing which base pairs are
natured in that state. Denaturation decreases the unstre
helicity of the involved base pairs from that characteristic
theB-form duplex to that of the untwisted condition. If the
aren denatured base pairs in the molecule in the given st
the total change in unstressed helicity resulting from t
transition is2n/A, whereA510.4 bp/turn for denaturation
@36#. Only whenn52Aa does the extent of denaturatio
exactly relax the imposed linking difference. All states f
which nÞ2Aa will experience some level of uncompen
sated superhelicity. The resulting torsional stresses caus
two single strands comprising a denatured region to tw
around each other. We denote the total change of twist a
ing from this effect byT. Finally, the residual linking differ-
encea r is that portion ofa that is not expressed by either o
the above two structural alterations. According to the form
ism presented above, this residual deformation need no
decomposed further, since the energetics associated wita r
have been determined experimentally.

These deformations are all coupled together by the to
logical constraint arising from the constancy of the linki
differencea:

a52
n

A
1T1a r . ~7!
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With a and the secondary structure of each base pair sp
fied, the torsional deformationT and the residual linking dif-
ferencea r still can vary, provided they do so in a reciproc
manner consistent with Eq.~7!. We consider in turn each
type of deformation and its associated energetics.

Local denaturation

Let nj , 1< j <N, be a variable whose value isnj51
when the base pair at positionj is denatured~sometimes also
called ‘‘separated’’ or ‘‘open’’! andnj50 when it is in theB
form ~i.e., ‘‘bonded’’ or ‘‘closed’’!. Because the molecule i
circular, base pairs 1 andN are neighbors. To accommoda
this periodic boundary condition, we setnN1 j5nj as needed.
Specifying the value of eachnj determines a unique state o
secondary structure of the molecule, in which the total nu
ber of denatured base pairs is

n5(
j 51

N

nj . ~8!

We denote the energy required to denature base pairj if it
is at the edge of an open region bybj . The values ofbj can
be assigned individually to each base pair. In contrast
previous approaches@5#, this method places no restriction
on the values they can have. This energy of denaturatio
known to vary in complex ways with base sequence a
environmental conditions. Values ofbj have been measure
experimentally as functions both of base pair composit
@6# and of ionic strength@37#. The near-neighbor sequenc
dependence of the enthalpy and entropy of denaturation h
been determined under various environmental conditi
@7–9#. Energies of denaturation have been evaluated for
thylated bases, and for abasic sites@31,32,38#. Previous the-
oretical analyses of superhelical DNA denaturation assum
copolymeric transition energetics, with a single valuebAT
ascribed to eachAT base pair, and another valuebGC given
to eachGC pair @5#. Under the environmental conditions o
the experiments used to detect superhelical denatura
these arebAT50.26 kcal/mol andbGC51.31 kcal/mol@16#.

A ‘‘run’’ is a region composed entirely of separated ba
pairs. Sincenj only changes withj at the boundary of a run
the numberr of runs in a state of a circular molecule can
expressed as

r 5(
j 51

N

nj~12nj 11!. ~9!

An initiation energya is required to nucleate a run of den
turation. This arises in large part from the energy needed
break the extra hydrophobic ‘‘stacking’’ interaction th
must be disrupted when the first base pair in a run is se
rated. The initiation energy for denaturation is large,a
'10– 13 kcal/mol, depending on environmental conditio
@16,39–42#. In the calculations reported below we use t
valuea510.8 kcal/mol that is appropriate for the experime
tal conditions under which superhelical denaturation is m
sured@16#.

Hence the total chemical energy needed to denature
base pairs in the state is



he
al
si

n
ff-
s
t
f-
e

e

u

nt

th

rm
e

of
w
to
it

h
q

no

lly
on

to

the

e

r-

-

ted

d

e

s-

3412 PRE 59RICHARD M. FYE AND CRAIG J. BENHAM
Hc5ar1(
j 51

N

bjnj5(
j 51

N

$~a1bj !nj2anjnj 11%. ~10!

Interstrand twisting within denatured regions

Because single stranded DNA is highly flexible and t
denatured regions within a superhelical molecule gener
remain torsionally stressed, the unpaired strands compri
them will tend to interwind. If the base pair at sitej is dena-
tured (nj51), and has a helical twist oft j rad/bp, the energy
associated with this deformation is

H~t j !5
Cnjt j

2

2
. ~11!

This energy arises in part from configurational restrictio
due to helical interwinding. The value of the torsional sti
ness, C'9.3310221erg cm, is known from experiment
@16,42#. We do not explicitly model fluctuations in the twis
of bonded~nondenatured! base pairs, as the torsional stif
ness of B-form DNA is about two orders of magnitud
greater than that of the individual denatured strands@26#.
Instead, this effect is subsumed withina r , the residual su-
perhelicity.

We will consider the torsional deformationst j at two lev-
els of detail. In case~1!, t j is set tot for each separated bas
pair j, so that the total twistT of the open regions is

T5
nt

2p
. ~12!

This is done primarily to enable comparisons with previo
treatments@5,16#. In case~2!, we allow thet j associated
with each denatured base pair to fluctuate independe
giving

T5(
j 51

N
njt j

2p
. ~13!

Note thatnj , and hence this summand, is nonzero only at
n denatured base pairs in the state under consideration.

Residual superhelicity and total energy

Once the separated base pairs and their torsional defo
tions are specified, the residual linking difference is det
mined as

a r5a1
n

A
2T. ~14!

This residual linking difference is comprised of twisting
the B-form regions, as well as bending deformations. Ho
ever, for present purposes,a r need not be decomposed in
these constituents because the energy associated with
known from experiments.

The energy associated with superhelical deformations
been measured by several experimental techniques to be
dratic in the linking difference under conditions where
denaturation occurs@43–45#. ~In that casea r5a.! The same
ly
ng

s
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e
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quadratic functional form also has been experimenta
found for the residual linking difference when denaturati
does occur@16,42#:

Hr5
Ka r

2

2
5

K

2 S a1
n

A
2TD 2

. ~15!

The coefficientK has been determined experimentally
vary inversely with molecular lengthN, having the valueK
'2220RT/N at the physiological temperature 37 °C.

The total energy associated with a state depends on
manner in which the torsional deformationst j are being
modeled. Adding all the contributions, we find that th
HamiltonianH1 for case~1!, wheret j5t, is

H15
nCt2

2
1

K

2 S a1
n

A
2

nt

2p D 2

1(
j 51

N

$~a1bj !nj2anjnj 11%. ~16!

In case~2!, where each of then separated base pairs is to
sionally deformed at a rate oft j rad/bp, the Hamiltonian is

H25(
j 51

N Cnjt j
2

2
1

K

2 S a1
n

A
2(

j 51

N
njt j

2p D 2

1(
j 51

N

$~a1bj !nj2anjnj 11%. ~17!

Calculation of the partition function

The calculation of the partition function involves sum
ming and integrating the usual Boltzmann factore2bH over
all the states available to the system, whereH here refers to
the Hamiltonian of a given state andb51/(kBT). We pro-
ceed by first eliminating the degrees of freedom associa
with the t j ’s, the twisting of the separated DNA strands.

First, consider case~1!, wheret j5t for each separated
base pair. For each numbern of separated base pairs an
imposed linking differencea, we minimize Eq.~16! with
respect tot. This leads to the conditiona rK52pCt. @The
same condition follows when Eq.~17! is minimized with
respect to thet j ’s.# If we replacet by this value, as was don
in previous work@5,16#, the effective HamiltonianH1 , now
dependent only on thenj ’s, becomes

H15
2p2CK

4p2C1Kn
S a1

n

AD 2

1(
j 51

N

$~a1bj !nj2anjnj 11%.

~18!

Under this minimizing assumption the partition function a
sociated withH1 has the form

Z15(
S

Q1~n!e2b( j 51
N $~a1bj !nj 2anjnj 11%, ~19!

where
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Q1~n!5expF22p2bCK

4p2C1Kn
S a1

n

AD 2G , ~20!

and

(
S

5 (
n150

1

(
n250

1

¯ (
nN50

1

~21!
es

si

th

r
-

lly
g
-

denotes summation over the 2N states of secondary structur
In case~2!, where eacht j corresponding to an open bas

pair is allowed to fluctuate, the partition function has a sim
lar form, differing only in the prefactorQ2(n). One can
integrate over then continuous degrees of freedomt j to
obtain the expression
Q2~n!5)
j 51

n E
2`

`

dt j expF2bH (
j 51

n Ct j
2

2
1

K

2 S a1
n

A
2(

j 51

n
t j

2p D 2J G . ~22!
l

es

opo-
ing

tors
ed
ion
ll
is

rix
Performing a matrix version of the completion of squar
one may evaluate this integral to be

Q2~n!5Q1~n!S H 2p

bCJ n 4p2C

4p2C1Kn
D 1/2

. ~23!

In each case the partition function may be expressed as

Zl5(
S

Ql~n!expH 2b(
j 51

N

@~a1bj !nj2anjnj 11#J ,

~24!

wherel equals 1 or 2 depending on the case being con
ered. We will henceforth drop the subscriptl unless specifi-
cally noted, as our calculation strategy will apply in bo
cases.

In both cases~1! and ~2! the partition function may be
written in the form Zl5Tr$exp(2bHl)%, whereHl is a
function of thenj ’s only. From Eqs.~20! and~23!, one of the
terms in eachHl is ln$Ql(n)%, which contains the facto
(a1n/A)2. Sincen25( j ,k51

N njnk , this shows that a cou
pling is induced inHl between every pair~j,k! of the base
pairs.

A naive calculation of the partition functions of Eq.~24!
would require a computation time growing exponentia
with the number of sitesN. However, an expression havin
the functional form of Eq.~24! can be evaluated in polyno
mial time using the following procedure. First we writeQ(n)
as

Q~n!5 (
m50

N

dm,nQ~m!, ~25!

wheredm,n is the Kroneckerd function:

dm,n5 H1
0

if m5n
otherwise. ~26!

Expressing thed function in the form

dm,n5S 1

N11D (
k50

N

expS 2p ik~n2m!

N11 D , ~27!

wherei 5A21, we obtain
,

d-

Q~n!5S 1

N11D (
m50

N

(
k50

N

Q~m!expS 2p ik~n2m!

N11 D .

~28!

Placing this expression forQ(n) into Eq.~24!, using the fact
that n5( j 51

N nj , and rearranging terms, yields

Z5 (
k50

N

F~k!q~k!, ~29!

where

q~k!5S 1

N11D (
m50

N

Q~m!expS 2
2p ikm

N11 D ~30!

and

F~k!5(
S

exp$2bH~k!%, ~31!

with

H~k!5(
j 51

N

cj~k!nj2anjnj 11 ~32!

and

cj~k!5a1bj2
2p ik

b~N11!
. ~33!

H(k) has the form of a one-dimensional lattice gas~or,
equivalently, Ising model!, in which the chemical potentia
~magnetic field! is site dependent and complex.

The F(k) term derives only from the chemical energi
associated with base pair separations, while theq(k) term
depends upon mechanical parameters associated with t
logical and geometric factors. These are the imposed link
differencea, the residual superhelicitya r , and the torsional
deformations of the denatured regions. Separating the fac
arising from the denaturation transition from those deriv
from the topological constraint enables efficient evaluat
of the entire expression.F(k) requires a summation over a
statesS of the secondary structure of the molecule. Th
summation will be performed using the transfer mat
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method@46#, as described below. OnceF(k) and the appro-
priate prefactorQ(m) have been evaluated, the balance
the computation is straightforward. We will show that all t
expectation values of interest can be calculated using e
tions having the general form of Eqs.~29!–~33!.

Transfer matrix method

We begin by briefly reviewing the transfer matrix meth
@46#, originally formulated for the Ising model. First, sup
q
s

he

o
n
n
am
rs
on
f

a-

poseM1 ,...,MN areq3q square matrices. We number row
and columns of these matrices from 0 toq21, and here
denote the element in thei th row and thej th column ofM l

by mi , j
l . The product of all these matrices is

P5M1M2 •••MN5)
l 51

N

M l , ~34!

and the trace ofP is
et

lar
Tr~P!5 (
j 50

q21

pj j 5 (
j 050

q21

¯ (
j N2150

q21

~mj 0 , j 1

1
¯mj l 21 , j l

l
¯mj N21 , j 0

N !. ~35!

To illustrate the transfer matrix method, we calculate theF(k) of Eq. ~31! needed to compute the partition function. We s

H~k!5(
l 51

N

Hl~k!, ~36!

where we here chooseHl(k) to have the symmetric form

Hl~k!5 1
2 $cl~k!nl1cl 11~k!nl 11%2anlnl 11 , ~37!

which is the form we will use in our algorithmic implementation.~This choice is somewhat arbitrary; we know of no particu
advantage to using a symmetric versus a non-symmetric form.! EachHl(k) only depends upon the variablesnl and nl 11 .
Because the collection of all states of the systemS is exhausted by permitting each variablenl , l 51,...,N, to take on every
possible value, it follows that

F~k!5(
S

e2bH~k!5 (
n150

1

¯ (
nN50

1

~e2bH1~k!@n1 ,n2#
¯e2bHl ~k!@nl ,nl 11#

¯e2bHN~k!@nN ,n1#!. ~38!
As
op-
cal
ec-

vide
he-

le

peri-

e
ents
uate
b-

d

ual
In this formF(k) has the same structure as that given in E
~35!, with q52. This shows thatF(k) can be expressed a
the trace of the product of 232 transfer matricesM l(k), l
51, . . . ,N, one for each base pair in the molecule. T
transfer matrix M l(k) has entry m(k) i , j

l ~i 50,1 and j
50,1) corresponding, respectively, to the values ofe2bHl (k)

arising whennl50,1 andnl 1150,1. Thus, the matrixM l(k)
that occurs when one uses the symmetric form ofHl(k) in
the evaluation ofF(k) is

M l~k!5S 1
e2bcl ~k!/2

e2bcl 11~k!/2

e2b~2a1$cl ~k!1cl 11~k!%/2!D . ~39!

This shows that the functionF(k) in Eq. ~31! may be ex-
pressed as

F~k!5TrS )
l 51

N

M l~k!D . ~40!

Computations using this method require an evaluation
products of large numbers of matrices. In the standard o
dimensional Ising model, the transition energetics are ide
cal at every position, so the transfer matrices are all the s
and the trace can be expressed as the sum of powe
eigenvalues@46#. In the present case the energy of transiti
varies with base sequence, so the transfer matricesM l(k)
.

f
e-
ti-

e
of

associated with different base pairs will not be identical.
multiplication of these matrices does not commute, this
eration must be performed numerically. The numeri
implementation of this approach is described in a later s
tion.

Calculation of ensemble averages

The ensemble average values of several quantities pro
important insights into the transition behavior of a super
lical DNA molecule. These include the average numbersn̄ of
denatured base pairs andr̄ of runs of transition, and the
average total twistT̄ of the denatured regions. The ensemb
average residual linking differenceā r , obtainable fromT̄, is
an important parameter to calculate because it can be ex
mentally measured using gel electrophoresis techniques@42#.
The biologically most interesting information involves th
locations where denaturation occurs, and the relative ext
and energy costs of transition at those locations. We eval
locations and extents of transition by calculating the pro
ability of transitionpl5n̄l individually for each base pair 1
< l<N. The resulting transition profile is typically displaye
graphically by plottingpl against sequence locationl. ~An
example is displayed as the upper graph in Fig. 4 below.! A
method to calculate the destabilization energies of individ
base pairs is described in a later section.
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The additional quantities that must be calculated in or
to evaluate these ensemble averages all have the funct
forms expressed in Eqs.~29!–~33!. Only the forms of the
prefactorsQ(m) and the summands ofF(k) may differ.
Hence they can be evaluated by the general procedure
was described above for the partition function.

Calculation of the average number n¯of separated base pairs

The ensemble average number of separated base pairn̄ is

n̄5
Z~n!

Z
, ~41!

where

Z~n!5(
S

nQ~n!e2b( j 51
N $~a1bj !nj 2anjnj 11%. ~42!

This expression may be evaluated using the same techn
as was described above for the partition function, with
sole modification thatQ(n) is replaced bynQ(n). As this is
still a function ofn alone, the procedure applies unchang
Alternatively, one may evaluaten̄ as the sum of the transi
tion probabilitiesn̄l of the individual base pairs, which w
now consider.

Calculation of n̄l

The transition profile of a DNA sequence at linking d
ferencea is a graph of the equilibrium probability of trans
tion pl , 1< l<N, of each base pair in the molecule. He
pl5n̄l is given by

n̄l5
Z~nl !

Z
, ~43!

whereZ(nl) is the contribution to the partition function from
all states in which base pairl is separated:

Z~nl !5(
S

Q~n!nle
2b( j 51

N $~a1bj !nj 2anjnj 11%. ~44!

Z(nl) may be cast in the functional form of Eq.~29!, with
F(k) replaced by

Fl~k!5(
S

nl expS 2b(
j 51

N

Hj~k!D . ~45!

Here theHj (k)’s are the same as those used in the evalua
of the partition function. This has the effect of replacin
the transfer matrix M l(k) by that corresponding to
nl exp(2bHl(k)),

M l8~k!5S 0
e2bcl ~k!/2

0
e2b„2a1$cl ~k!1cl 11~k!%/2…D . ~46!

All the other N21 transfer matrices remain unchanged,
do theq(k)’s. BecauseZ(nl) is the partition function with
base pairl always separated, one can calculate the free
ergy DG( l ) required to separate base pairl as
r
nal

hat

ue
e

.

n

s

n-

DG~ l !5~2kBT!$ ln Z~nl !2 ln Z%52
ln pl

b
. ~47!

Calculation of the average number r¯of runs

The ensemble average number of runs of transition,r̄ , is
given by

r̄ 5
Z~r !

Z
, ~48!

where

Z~r !5(
S

Q~n!re2b( j 51
N $~a1bj !nj 2anjnj 11%. ~49!

Expressingr as

r 5(
l 51

N

~nl2nlnl 11!, ~50!

one obtains

Z~r !5(
l 51

N

@Z~nl !2Z~nlnl 11!#, ~51!

where

Z~nlnl 11!5(
S

Q~n!nlnl 11e2b( j 51
N $~a1bj !nj 2anjnj 11%.

~52!

The expressionsZ(nl) have been calculated above for eachl.
The termZ(nlnl 11) again has the functional form of Eq
~29!, with F(k) now replaced by

Fl ,l 11~k!5(
S

nlnl 11 expS 2b(
j 51

N

Hj~k!D . ~53!

In this case the transfer matrixM l(k) is replaced by that
corresponding tonlnl 11 exp„2bHl (k)…,

M l9~k!5S 0
0

0
e2b„2a1$cl 11~k!1cl ~k!%/2…D , ~54!

while all other transfer matrices remain unchange
@Equivalently, one could replace exp„2bHl(k)… by
nl exp„2bHl(k)… and exp„2bHl 11(k)… by
nl 11 exp„2bHl 11(k)…, giving two matrices having the form
of Eq. ~46!.#

Calculation of the average total twistT̄

We now consider the ensemble average total twistT̄ of
the unpaired~open! regions, which we write in the form

T̄5
1

2p (
j 51

N

njt j5
Z~T !

Z
. ~55!

For both cases~1! and ~2! (l51 and 2!, we find that
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Zl~T !5(
S

Ql,t~n!e2b( j $~a1bj !nj 2anjnj 11%, ~56!

where

Ql,T ~n!5Ql~n!S Kn

4p2C1Kn
D S a1

n

AD . ~57!

The expressionsQl ,T that result are functions ofn alone, so
the evaluations ofZ(T ) proceed in the same manner as w
described above for the partition function.

Calculation of residual twistingā r

Using Eq.~7! to expressa r in terms of the other defor
mations, one obtains

ā r5a1
n̄

A
2T̄. ~58!

The procedures used to calculate the two average value
the right hand side of this equation have already been
scribed.

Calculation of ‘‘energy’’ H̄

We now calculate theH̄l’s, the ensemble averages of th
effective Hamiltonians of Eqs.~16! and~17!. These average
are used in the calculations of base pair destabilization e
gies, discussed below. As a reminder,l51 and 2 refer to
our different assumptions regarding twisting deformatio
with l52 the more generally physically relevant.

For case~1! (l51), we use theH1 of Eq. ~16! to obtain

H̄5
(SH1e~2bH1!

(Se
~2bH1!

5
Z1~H !

Z1
. ~59!

The partition functionZ1 has already been calculated.Z1(H)
is given by

Z1~H !5(
S

$R1~n!e2b( j 51
N $~a1bj !nj 2anjnj 11%%

1(
j 51

N

~a1bj !Z1~nj !2(
j 51

N

aZ1~njnj 11!,

~60!

where, from Eq.~18!,

R1~n!5F 2p2CK

4p2C1Kn
S a1

n

AD 2GQ1~n! ~61!

As the first term of Eq.~60! has the general form of th
partition function of Eq.~24!, and Z1(nj ) and Z1(njnj 11)
have been evaluated above,H̄1 can be calculated using th
procedure developed above for Eqs.~29!–~33!.

Integrating over thet j ’s, we find that case~2! reduces to
the form of Eqs.~60! and ~61! as well. Specifically,
s

on
e-

r-

,

H̄5
Z2~H !

Z2
. ~62!

Z2 has already been evaluated, andZ2(H) is given by

Z2~H !5(
S

$R2~n!e2b( j 51
N $~a1bj !nj 2anlnl 11%%

1(
j 51

N

~a1bj !Z2~nj !2(
j 51

N

aZ2~njnj 11!,

~63!

where

R2~n!5Q2~n!F n

2b
1

2p2CK

4p2C1Kn
S a1

n

AD 2G . ~64!

Calculation with fixed base pair separations

Several types of externally imposed conditions may aff
the secondary structure of specific base pairsin vivo. Site-
specific DNA binding proteins or enzymes may hold partic
lar base pair~s! either open (nl51) or closed (nl50). Alter-
natively, abasic sites are created when the purine
pyrimidine base at a site is lost. This does not disrupt
continuity of the sugar-phosphate backbone, so the topol
cal constraint is unaffected. However, there being no bas
that site, Watson-Crick pairing is impossible. Enforced op
ings or closures can have a significant effect on the dest
lization experienced by other base pairs throughout the
main. For example, the externally enforced separation o
base pair, as occurs at an abasic site, permanently nucl
denaturation at that site, so the large initiation energya
needed to start a run at any other position is not needed th
This increases the probability that additional denaturat
will occur in that region over what would be expected in t
intact molecule@23#.

The partition function that arises when base pairl is con-
strained to be open is given by

Z~nl !5(
S

Q~n!nle
2b( j 51

N $~a1bj !nj 2anjnj 11% ~65!

which is a sum only over states wherenl51. Similarly, the
partition function with base pairl held closed is

(
S

Q~n!~12nl !e
2b( j 51

N $~a1bj !nj 2anjnj 11%5Z2Z~nl !.

~66!

If base pairsl and l 8 are both held open, for example, th
partition function becomes

Z~nl ,nl 8!5(
S

Q~n!nlnl 8e
2b( j 51

N $~a1bj !nj 2anjnj 11%.

~67!

The ensemble averages derived previously can all be
culated with these base pairing constraints. For example,
probability n̄l( l 8) that sitel is separated when sitel 8 is held
open~nl 8 fixed at 1! is given by
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n̄l~ l 8!5
Z~nl ,nl 8!

Z~nl 8!
. ~68!

The probability that sitel is separated with the base pair
site l 8 held closed is similarly given by

Z~nl !2Z~nl ,nl 8!

Z2Z~nl 8!
. ~69!

For certain averages and under general base pair separ
constraints it is necessary to calculate quantities of the g
eral form

Z~nl 1
,nl 2

...nl M
!

5(
S

Q~n!nl 1
nl 2

...nl M
e2b( j 51

N $~a1bj !nj 2anjnj 11%.

~70!

This is accomplished by modifying the appropriate trans
matrices, as has been done in Eqs.~46! and ~54! above.

Calculation of destabilization energies

Sites where stress-induced destabilization occurs bu
not sufficient to drive denaturation may be important as
gets for other molecules, such as helicases, whose activ
a

th
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n
to

.

e
pl
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.
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e
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tion
n-

r

is
r-
ies

affect strand separation. If these other molecules can con
ute only marginally to the energy needed to denature th
target DNA site, they may be able to induce separation o
when that site is already partially destabilized. In this w
imposed torsional stresses~such as those produced by neg
tive superhelicity! may facilitate events involving denatur
ation, even where these stresses do not drive separatio
completion. The calculations of destabilization energies
veloped here are designed to find such partially destabili
regions.

One estimator of the energy required to separate a par
lar base pairl can be obtained by comparing the usual e
semble averageH̄ with the ensemble averageH̄( l ) found
when base pairnl is held open. The differenceDH̄( l )
5H̄( l )2H̄ provides a measure of the extent to which ba
pair l is destabilized by the imposed stresses: the smaller
difference, the more destabilized the base pair@28#.

This effective destabilization energyH̄( l ) must be calcu-
lated for each sitel. Restoring thel subscript referring to
twisting assumptions, we have

H̄l~ l !5
Z~nl ,Hl!

Z~nl !
, ~71!

with
Z~nl ,Hl!5(
S

$Rl~n!nle
2b( j 51

N $~a1bj !nj 2anjnj 11%%1(
j 51

N

~a1bj !Zl~njnl !2(
j 51

N

aZl~njnj 11nl !. ~72!
he

se
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The methods to evaluate each term in this expression h

been described above. TheDH̄( l )’s are typically less noisy
estimators of site-specific destabilization energies than
DG( l )’s of Eq. ~47! @28#; however, they are also computa
tionally more expensive.

Evaluation of an alternate strategy for treating the linking
number constraint

As seen from Eq.~7!, we impose an exact constraint o
the linking numbera. Another possible approach could be
use a ‘‘linking number potential’’~LNP!, which we denote
by m. This strategy would be implemented by retaininga r as
an independent variable, usingKa r

2/2 in Eqs.~16! and ~17!
instead of the rightmost term of Eq.~15!, adding a term
2m@2(n/A)1T1a r # to the effective Hamiltonians of Eqs
~16! and ~17!, and then adjustingm until the expectation
value of the right side of Eq.~7! achieves the desired valu
of a. This type of approach, analogous to going for exam
from the canonical to the grand canonical ensemble, can
effective in cases where the Hamiltonians are homogene
~at least on some length scale! in the limit of large systems
One example of such a ‘‘thermodynamic limit’’ system is
homogeneous Ising ring of a few thousand sites, wher
constraint on total spin and the use of the appropriate m
ve

e

e
be
us

a
g-

netic ‘‘potential’’ would give practically indistinguishable
results. However, this approach is not well controlled for t
systems we treat.

First, this approach is not strictly applicable in our ca
because the linking number is not an extensive variable
the usual sense. That is, there is no intensive ‘‘linking d
sity’’ whose integration over the molecule yieldsL. To see
this, consider two curves. The first is a figure eight with
single contact point, and the second is the same curve af
strand passage through the contact point. As these confo
tions differ only infinitesimally, all intensive parameters d
scribing them also differ infinitesimally. So the integrals
any intensive quantities, as they are taken over a fixed
finite length, will also differ infinitesimally. But the linking
numbers of these configurations differ by 2. It follows th
the linking number is not generally computable from an
tensive density. Instead it is expressed using a Gaus
double integral. This means it does not depend on stri
local quantities, but rather on how each part of the molec
is positioned relative to every other part@47#.

Second, the thermodynamic limit itself is much mo
problematic in our model, in part because nonrandom het
geneity can lead to situations where only a small part or p
of the system are active. As a simple example, inserting
AT base pairs into a superhelical circular DNA molecu
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consisting of 5000GC base pairs would have a dramat
effect on whether and where denaturation would occur,
property we are interested in. But the addition of 100 sites
a 5 K bp homogeneous Ising ring would in general have
negligible physical effect. This behavior has been obser
experimentally: in a circular 4000 base pair plasmid, the
moval of a particular 16 consecutive base pairs was show
dramatically affect when and where local denaturation
curred @15#. In general, it is not clear that the systems w
study are in the ‘‘thermodynamic limit’’ in the usual sens

Third, the use of a linking number potentialm requires
taking weighted averages over ranges of linking differen
a. However,a can only assume values that differ by discre
integers, while use of a LNPm places no such constraints o
the right side of Eq.~7!. Moreover, when local denaturatio
first occurs, the case in which we are often most interes
experimental systems~and our model! are very sensitive to
the precise value of the linking number, with small~integer-
valued! changes having large effects on the denaturation
havior. Under these circumstances it is not clear how ac
rate a weighted average over a continuous range of link
differences would be for our~finite! systems.

Lastly and perhaps most importantly, as discussed follo
ing Eq. ~24!, direct long-range interactions between all t
base pairs are generated in our model when the twist v
ables are integrated over. However, only nearest-neigh
interactions between base pairs are generated if one use
LNP approach and integrates overa r and the twist variables
In general, it is not a well controlled strategy to try to calc
late the effects of long-range interactions using a model
contains only nearest-neighbor interactions.

Using a ‘‘linking number potential’’ approach might lea
to accurate results some of the time, perhaps often. Howe
we do not in general know how well controlled such
approach is for our systems. Indeed, it seems most likel
fail precisely in the cases in which we have the grea
interest. In fact, the only way to reliably test an LNP a
proach would be to compare with a numerically exa
method such as the one presented in this paper. Furthe
develop below a fast, approximate but well-controlled a
very accurate implementation of the preceding exact met
that can simulate problems of biological interest~molecules
several kilobase pairs long! in a few hours on a high-end
work station. This makes the implementation of a fast
uncontrolled approximate approach even less important.

ALGORITHM IMPLEMENTATION

Operations count

In this analysis all quantities requiring calculation a
sums having the general structure of Eq.~29!:

(
k50

N

F~k!r~k!. ~73!

Although ther(k)’s generally will differ in the calculation
of different quantities, all involve a discrete Fourier tran
form of N11 terms@see, e.g., Eq.~30!#. TheF(k)’s, which
will also typically vary in calculations of different quantities
are expressed as traces of products ofN 232 transfer matri-
ces.
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To describe how these calculations are implemented
merically, we consider three illustrative cases—the calcu
tion of the ensemble average total twistT̄, of the transition
profile ~which involves evaluating all then̄l ’s, 1< l<N!, and
of the average number of runsr̄ 5( j 51

N (n̄ j2njnj 11!. The
techniques needed in these cases also apply to all others
will show how all of these calculations together can be p
formed in O(N2) steps withO(N) memory. @A minimal
memory ofO(N) is required simply for storing the base pa
sequence.#

We consider first the calculation of the partition functio
Z and the total twistT̄. In the calculation ofZ, the r(k) of
Eq. ~73! is given by theq(k) of Eq. ~30!. In calculatingT̄
5Z(T )/Z, ther(k) for Z(T ) derives from the Fourier trans
form of theQT (n) of Eq. ~57!. For bothZ andZ(T ), F(k)
is given by theF(k) in Eqs.~31!–~33!.

EachF(k) in the sum of Eq.~73! requiresO(N) opera-
tions to evaluate, as it involves the multiplication ofN 232
matrices. Calculating eachr(k) also requires no more tha
O(N) operations. As there areN11 different values ofk, a
total of O(N2) operations is required to computeZ and T̄.
@The prefactor can be reduced somewhat by using the
Fourier transform, which requires roughlyO(N ln N) rather
thanO(N2) operations to compute allN11r(k)’s; however,
O(N2) total operations are still required for theF(k)’s.#

We now consider the transition profile and the total nu
ber of runsr̄ . TheN differentZ(nl)’s andZ(nlnl 11)’s, nec-
essary to compute then̄l ’s and r̄ , are given by

Z~nl !5 (
k50

N

Fl~k!q~k! ~74!

and

Z~nlnl 11!5 (
k50

N

Fl ,l 11~k!q~k!, ~75!

with Fl(k) and Fl ,l 11(k) given by Eqs.~45! and ~53!, re-
spectively. A direct calculation of these 2N quantities would
involve O(N3) operations. However, this can be reduced
O(N2) by using the fact that the transfer matrices who
products must be evaluated have a high degree of simila
Specifically, the matrix products used to evaluateF(k),
Fl(k), andFl ,l 11(k) differ only in the matrix at positionl, as
was noted previously@see Eqs.~46! and ~54!#.

To take advantage of this similarity, we compute two s
of matrix productsPl

(L) and Pl
(R) , 1< l<N. Pl

(L) is the
‘‘left’’ product of the transfer matrices from 1 tol,

Pl
~L !5M1 •••M l5Pl 21

~L !
•M l . ~76!

Pl
(R) is the ‘‘right’’ product of the transfer matrices froml to

N,

Pl
~R!5M l •••MN5M l•Pl 11

~R! . ~77!

Recursive evaluation of all thePl
(L) and Pl

(R) matrices in-
volves O(N) operations, and their storage requiresO(N)
space. Once these matrices have been calculated,Fl(k) may
then be evaluated as



is

n

n-

pa-

m-
2.
-
la-

PRE 59 3419EXACT METHOD FOR NUMERICALLY ANALYZING A . . .
Fl~k!5Tr~Pl 21
~L !

•M l8•Pl 11
~R! !, ~78!

andFl ,l 11(k) as

Fl ,l 11~k!5Tr~Pl 21
~L !

•M l9•Pl 11
~R! !, ~79!

with M l8 and M l9 given by Eqs.~46! and ~54!. This again
requiresO(N) operations for allN values ofl. Hence, using
this approach, allN of the Fl(k)’s and Fl ,l 11(k)’s for a
given l may be computed inO(N) time using O(N)
memory. Therefore, the separation probabilitiesn̄l and aver-
age number of runsr̄ can all be calculated inO(N2) time
with O(N) memory. This matrix multiplication procedure
numerically stable.

A possible alternative procedure with the same time a
memory scaling would be to define

Pl5M l •••MN•M1 •••M l 21 . ~80!

Starting with

P15M1 •••MN , ~81!

one could recursively calculate all thePl ’s:

Pl5~M l 21!21
•Pl 21•M l 21 . ~82!

Using the cyclic property of the trace, one then has

Fl~k!5Tr„M l8•~M l !
21

•Pl… ~83!
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Fl ,l 11~k!5Tr„M l9•~M l !
21

•Pl…. ~84!

However, because of the repeated application ofboth M l ’s
and (M l)

21’s, this alternative procedure is numerically u
stable.

It requires an additionalO(N2) steps to compute the
above quantities for a given set of imposed base pair se
rations or closures. Hence it requiresO(N3) steps and
O(N2) memory to calculate allN destabilization energies
DH̄( l ), 1< l<N, from Eqs.~71! and ~72!.

One can use the following procedure to reduce the nu
ber of operations required by approximately a factor of
We will illustrate with the calculation of the partition func
tion Z5(k50

N F(k)q(k) since, as discussed above, calcu
tions of all the observables involve similar techniques.

Becausem is an integer, it follows from Eq.~30! that

q~N112k!5q* ~k!, ~85!

where the star denotes complex conjugation. Similarly,

F~N112k!5F* ~k!, ~86!

sincen5( j 51
N nj can also assume only integer values. IfN is

even, we hence have
(
k50

N

F~k!q~k!5F~0!q~0!1 (
k51

N/2

F~k!q~k!1 (
k51

N/2

F* ~k!q* ~k!5F~0!q~0!12(
k51

N/2

Re$F~k!q~k!%, ~87!

where Re(z) denotes the real part of a complex numberz. If N is odd, we obtain

(
k50

N

F~k!q~k!5F~0!q~0!1FS N11

2 DqS N11

2 D12 (
k51

~N21!/2

Re$F~k!q~k!%. ~88!
tio
ag-
ist

e-

ple

re
Since only half thek values are now required, the comput
tional time is halved.

As mentioned above, theF(k) terms in Eq.~73! derive
from the chemical properties of denaturation, while t
r(k)’s are determined by mechanical properties associa
with the twisting deformations and residual superhelici
Thus the same set ofF(k)’s can be used with differen
r(k)’s if only twisting parameters are changed~and vice
versa!. In particular, once theF(k)’s have been calculate
for one value of the linking difference, they do not need to
recalculated to handle additional values. So the increme
cost of treating a range of linking differences is reduced.

Catastrophic cancellation

This algorithm can experience a severe sign cancella
problem when applied to large DNA molecules. A loss
precision occurs when certain summations are perform
because the magnitude of the final sum is much smaller
d
.

e
tal

n
f
d,
an

the magnitude of the largest term in its summand. If the ra
of the total sum to this largest term becomes smaller in m
nitude than machine precision, then the final sum will cons
only of round-off noise. In our calculations this ratio b
comes small exponentially with molecular length.

To illustrate how this problem arises, consider a sim
example. Suppose that the energy of initiationa is zero and
that the base pair separation energiesbj are also zero. Fur-
ther, assume thatQ(n) has the form

Q~n!5e2kn, ~89!

with k.0. This simplifiedQ(n) shares the essential featu
with the Q(n)’s of Eqs.~20! and ~23! in that it decays with
an exponent that is asymptotically linear inn, for large n.
With these assumptions, the partition functionZ becomes

Z5(
S

Q~n!5(
S

e2k( j 51
N nj5~11e2k!N. ~90!
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In our algorithmZ is written in the form of Eq.~29!,

Z5 (
k50

N

z~k!, ~91!

where

z~k!5F~k!q~k!. ~92!

Under the conditions of this example,z(0) may be shown to
have the real part of greatest magnitude of all thez(k)’s.
From Eqs.~31!–~33!, one finds that

F~0!52N. ~93!

Also,

~N11!q~0!5 (
m50

N

e2km5
12e2k~N11!

12e2k .1, ~94!

so that

z~0!5F~0!q~0!.S 1

N11D2N. ~95!

Hence, the ratio of the partition functionZ to its largest term
z(0) obeys

Z

z~0!
,~N11!S 11e2k

2 D N

, ~96!

which decays exponentially with system size. For any fix
machine precision, there will be a molecular lengthN be-
yond which the calculation ofZ will consist entirely of
round-off error.

Sample calculations have been performed to determ
the extent of this problem in realistic cases. Molecules
varying lengths were analyzed, each at a linking differen
a520.055L0 which corresponds to physiological levels
superhelicity in bacteria. The energy parameters used
these calculations are the ones which have been show
apply in the environmental conditions of the experimen
procedure of Kowalski and co-workers, by which superhe
cal denaturation is detected@16,48#. The sequences analyze
were the firstN base pairs~i.e., j 51 . . . ,,N! of the pBR322
DNA molecule, for 100<N<2400. The transition probabil
ity pl of each base pair was calculated, both in quadr
precision~on a 32 bit machine! and using the arbitrary pre
cision FORTRAN package developed by Bailey@49# with 200
decimal digits of precision. The degradation of precision
the quadratic precision calculation with molecular length w
measured by determining the number of decimal digits
agreement between thepl ’s calculated each of the two ways
and selecting its minimum value over the sequence analy
1< l<N. ~We note that the measured average number
decimal digits of agreement over the entire sequence diffe
from this minimum value by less than 1% in all calcul
tions.!

The results of this procedure are shown in Fig. 1. T
number of digits of accuracy of the quadratic precision c
culation fell from the maximum of 33.7 that is available
the Hewlett-Packard implementation of quadratic precis
d

e
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f

ed
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n

to zero at a molecular length ofN52400 base pairs. The
observed decrease in the number of significant digits w
nearly linear with molecular length, as the regression l
shows, in qualitative agreement with the exponential form
Eq. ~96!.

These results demonstrate the need to implement this
gorithm in high precision arithmetic. The calculation
needed to analyze a 10 000-bp molecule under these co
tions can be estimated from these sample runs to suffer
loss of approximately 140 decimal digits of accuracy due
catastrophic cancellation. Thus high precision implemen
tions using floating point arithmetic with 200 decimal digi
of accuracy will generally suffice to analyze biological s
quences of this size. Our calculations were implemented
ing Bailey’s multiprecisionFORTRAN packageMPFUN, which
allows the user to specify the level of precision@49#.

Implementing these calculations using multiprecisi
arithmetic significantly slows their execution speed. T
CPU times required in the sample calculations descri
above are shown in Fig. 2 as functions of molecular leng
These computations were performed with 200-decimal-d
accuracy on one R10000 64-bit processor of a Silicon Gra
ics Power Challenge computer. These execution times g
quadratically with molecular lengthN, as expected.

As noted above, lower precision calculations suffice
small molecules, while higher precision is required to tre
larger ones. If the run time for a particular problem depend
strongly on the required precision, an additional scaling w

FIG. 1. Stress-induced denaturation is analyzed in molecule
different lengths whose linking differences are chosen so that e
has a superhelix densitys5a/L0520.055, a common physiologi
cal value. This analysis is performed using the exact method in b
quadratic precision and in high precision with 200 decimal digits
accuracy. The number of significant digits of accuracy of the q
dratic precision implementation was assessed by comparing its
tent of agreement with the high precision results in each case.
figure plots this accuracy at various sequence lengths as squ
and the fitted regression line is also shown. One sees a rapid, lin
loss in the number of significant digits with sequence length due
catastrophic cancellation. Extrapolation of this regression line
lows one to estimate the arithmetic precision needed to achie
prescribed accuracy in the analysis of a DNA domain of any leng
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system sizeN could be introduced. However, the run tim
for calculations of up to 1000 decimal digits of accuracy
the multiprecision implementation of Bailey used here
dominated by the overhead from invoking the arbitrary p
cision subroutines, so that execution speed does not de
significantly on the precision specified@49#.

Accelerated algorithm

Under typical physiological conditions the most fr
quently occupied states of superhelical DNA denaturat
will have a relatively small number of open base pairs. W
have taken advantage of this fact to develop a modified
gorithm that retains a prescribed degree of accuracy
greatly reduced computational cost. In essence, this con
attention in a controlled way to the terms that dominate
partition function.

Combining Eq.~24! for the partition functionZ with Eq.
~25! for Q(n), rearranging terms, and dropping the subsc
l referring to different treatments of the twist, we obtain

Z5 (
m50

N

Z~m!5 (
m50

N

Q~m!Z~m!, ~97!

where

Z~m!5(
S

dm,n expH 2b(
j 51

N

@~a1bj !nj2anjnj 11#J .

~98!

The indexm in Eqs. ~97! and ~98! refers to the number o
open base pairs in the states being considered. For eachm the
set of states summed over in Eq.~98! are those for which the
total number of open base pairs is( j 51

N nj5m. In what fol-
lows we denote byZ(M ) the partial sum of the terms in th
partition function up to and includingm5M :

FIG. 2. The CPU time required for an exact calculation us
Bailey’s MPFUN high precisionFORTRAN package@49# with 200
decimal digits of accuracy is plotted as a function of molecu
sequence length~squares!. These calculations were performed on
single R10000 64-bit RISC-based Silicon Graphics processor.
curve gives the best quadratic fit to the data points.
-
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Z~M !5 (
m50

M

Z~m!. ~99!

To find an upper boundM that suffices to guarantee
specified level of accuracy we proceed as follows. For e
value of m, we find a lower boundZL(m) and an upper
boundZU(m) for the termZ(m):

0,ZL~m!<Z~m!<ZU~m!, 1<m<N. ~100!

Then

Z2Z~M !5 (
m5M11

N

Z~m!< (
m5M11

N

ZU~m!5ZU2ZU
~M ! ,

~101!

whereZU
(M )5(m50

M ZU(m) andZU5(m50
N ZU(m). Also,

ZL5 (
m50

N

ZL~m!<Z. ~102!

Hence,

Z2Z~M !

Z
<

ZU2ZU
~M !

ZL
. ~103!

The expression on the right hand side of this inequality is
upper bound on the fractional accuracy that is sacrific
when the true partition functionZ is replaced byZ(M ), which
is the value obtained when states having more thanM simul-
taneously open base pairs are ignored. Suppose that,
specifiede, we can find anM such that

ZU2ZU
~M !

ZL
,e. ~104!

Then Eq.~103! shows that thise also bounds the error aris
ing whenZ is approximated byZ(M ):

Z2Z~M !

Z
,e. ~105!

We note that the same bound also applies to calculat
of other quantities needed to evaluate ensemble avera
For example, consider the quantityZ(nl) that is defined in
Eq. ~44! and used to calculate the probabilitypl that base
pair l is separated. Denote by$Z(nl)%(m) the contribution to
Z(nl) from all states withm open base pairs. Because
<nl<1, $Z(nl)%(m)<Z(m) for all m. Therefore

Z~nl !2 (
m51

M

$Z~nl !%~m!5 (
m5M11

N

$Z~nl !%~m!

< (
m5M11

N

Z~m!5Z2Z~M !,eZ.

~106!

So the approximation involved in ignoring states with mo
thanM open base pairs will result in an error in the calcu

r

e
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tion of eachpl which is less thane. Similar reasoning applies
to Z(nl ,nk) and the other quantities used to calculate
semble averages.

Upper and lower bounds may be calculated as follo
Let bmin and bmax denote the minimum and the maximu
values of the separation energy parameterbi over the se-
quence being considered, and assumebmin ,bmax.0. ~In the
copolymer analysis,bmin and bmax would bebAT and bGC ,
respectively.! One determines a lower bound on the ene
of every state if one ascribes the valuebmin to each open bas
pair. Because the energies enter the partition function wi
negative exponent, this will provide an upper boundZU(m)
>Z(m) for everym. Similarly, ascribing the energybmax to
every open base pair yields a lower boundZL(m)<Z(m).
One can easily enumerate the contributions to the parti
function from all states withm open base pairs under circum
stances where all base pairs have the same transition en
b ~i.e., the transition is homopolymeric!. Specifically, one
has (mÞ0)

Z~m!5Q~m!e2bbm(
r 51

r max

N~m,r !e2bar, ~107!

where the maximum number of open regionsr max5m if m
<N/2, andr max5N2m otherwise.~Recall that the molecule
under consideration is circular.! HereN(m,r ) is the number
of states havingm open base pairs inr runs, which is@5#

N~m,r !5(
r 51

r max N

r S m21
r 21 D S N2m21

r 21 D . ~108!

Therefore,ZL(m) andZU(m) both have the form

Z~m!5Q~m!e2bbm(
r 51

r max N

r S m21
r 21 D S N2m21

r 21 De2bar,

~109!

whereb5bmin when calculatingZU(m), andb5bmax when
calculatingZL(m).

One may then compute easily calculable bounds onZL
andZU by considering bounds on the sum

(
r 51

r max e2bar

r S m21
r 21 D S N2m21

r 21 D5(
r 51

r max

f m~r !. ~110!

The ratio of successive terms in this sum is

f m~r 11!

f m~r !
5e2ba

~m2r !~N2m2r !

r ~r 11!
, ~111!

which is monotonically decreasing withr. For givenm and
N, the r 51 term f m(1) is the largest of thef m(r )’s when

~m21!~N2m21!,2eba. ~112!

This will be true for allm when it holds for them which
makes the left hand side of this inequality largest, which
m5N/2. At T5310 °K with a510.84 kcal/mol, one finds
that the above inequality holds for allm whenever N
,18 700 base pairs. Because the ratiof m(r 11)/ f m(r ) is
-

.

y

a

n

rgy

s

monotonically decreasing, its largest value isrm
5 f m(2)/ f m(1). This yields the following bounds:

(
r 51

r max

f m~r !, f m~1!@11rm1rm
2 1¯#5

f m~1!

12rm
. ~113!

Moreover, whene2ba(N2m21)(m21),1, one has
rm,0.5 for all m, so that the upper bound does not exce
2 f m(1). Under the above posited conditions this occurs
all m wheneverN,13 200 base pairs. Also,f m(1)5e2ba,
independent ofm. Insertion of these bounds into Eqs.~101!
and ~102! gives the upper bound

Z2Z~M !,2Ne2ba (
m5M11

N

Q~m!e2bbminm5BU~M !

~114!

and the lower bound

Z.e2bKa2/21Ne2ba (
m51

N

Q~m!e2bbmaxm5BL .

~115!

It requiresO(N) operations in total to calculateBL and all
the upper boundsBU(M ) (0<M<N). If we can find anM
for which BU(M )/BL,e, then Eqs.~103!, ~114!, and~115!
together show thate also provides an upper bound on th
error that arises when one disregards states with more thaM
open base pairs. This simplification reduces the opera
count fromO(N2) to O(MN), which in practice can reduce
the computational time by an order of magnitude or mo
For example, consider the pBR322 DNA molecule conta
ing 4363 base pairs, short enough for the above bounds t
valid under physiological conditions. This analysis guara
tees that an accuracy of at leaste51029 will be achieved
when M5442. In practice the actual accuracy may grea
exceed that suggested by the above estimate.

We also note that, in the accelerated algorithm,both the
summation variablesm andk in Eqs.~29!–~33! now take on
only the values@0, . . . , M# rather than@0, . . . , N#. Hence,
for a given temperature and base pair sequence, each c
lation at an additional linking difference requires only th
smallerO(M2) incremental computational time.

Performance of the accelerated algorithm

Sample calculations were performed to evaluate the
pendence onM of the execution time and accuracy achiev
by this accelerated algorithm. The strand separation beha
was analyzed in pBR322 DNA~N54363 base pairs! super-
coiled to a linking difference ofa5227 turns. This is the
linking difference the molecule is found to have, on avera
when it is extracted from bacteria. The energy parame
were assigned the values that apply under the condition
the nuclease digestion procedure by which superhel
strand separation is experimentally detected@16,49#.

The analysis was performed using the accelerated a
rithm with various values for the upper boundM in the range
100<M<200 base pairs. For comparison this transition w
also analyzed using the complete exact algorithm~i.e., M
5N!. In both cases the probabilitypl of strand separation
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was calculated for every base pair 1< l<N. For each value
of M the accuracy of eachpl was calculated as

A~ l !52 log10upl2pl~M !u, ~116!

the number of decimal digits of agreement with the ex
value. @Here pl and pl(M ), respectively, denote the value
calculated using the exact and accelerated algorithms,
latter with thresholdM.# The accuracy of the accelerate
algorithm was evaluated by finding both the minimum va
of A( l ) over the entire sequence and its average value.
ure 3 plots these two values as functions of the boundM.
These results show that the accelerated algorithm achi
very high accuracy at values ofM considerably smaller than
those estimated in the previous section. More than 18 d
mal digits of accuracy are achieved whenM5200, which is
less than 5% of the number of base pairs in this molecu

Figure 3 also displays the dependence of execution t
on M when the calculations are performed on an HP 90
735 computer, which has a RISC-based 32-bit proces
The CPU time required to perform these calculations is s
to increase linearly withM to high accuracy.

The above results show that under reasonable condit
one can retain a very high degree of accuracy with a mo
ate value ofM'0.05N, reducing the required computatio
time by an order of magnitude or more. The value ofM can
be selected using formulas giving rigorous bounds, as
done in the preceding section, orM can be estimated and th
accuracy checked by comparing simulation results for diff
ent values ofM. We find that simulations analyzing DNA
molecules having lengths of biological interest~several kilo-
base pairs! typically require a few hours on a high-end wor
station, which makes the accelerated algorithm a pract

FIG. 3. The top graph plots the average accuracy~squares! and
the minimum accuracy~circles! achieved by the accelerated alg
rithm as functions of the boundM imposed on the number of de
natured base pairs in a state. The bottom graph plots the exec
time of the accelerated algorithm as a function ofM, which is seen
to be linear inM to high accuracy. These calculations were p
formed on the pBR322 DNA sequence referred to in the text,
implemented on a dedicated HP 9000/735 RISC-based work
tion.
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method for calculating superhelical strand separation beh
ior under a wide variety of circumstances.

COMPARISONS WITH EXPERIMENTAL RESULTS

In vitro experiments

The locations and extents ofin vitro superhelical denatur
ation can be determined experimentally using the mung b
nuclease digestion procedure developed by Kowal
Natale, and Eddy@48#. This enzyme cuts single strands
DNA but does not cut the duplex. Sites of cutting may th
be located by sequencing, and the relative frequencie
cutting at different locations may be determined. The m
detailed experimental analysis of superhelical denatura
applied these procedures to the pBR322 DNA moleculeN
54363 bp)@48#.

Sample calculations have been performed on the pBR
DNA molecule using the exact algorithm developed abo
The linking difference was chosen to bea5227 turns, con-
sistent with physiological values. Copolymeric transition e
ergies were assumed, which ascribe one valuebAT to each
AT base pair, and another valuebGC to eachGC base pair.
These and all other energy parameters were assigned v
that were previously shown to be accurate under Kowa
and Eddy’s experimental conditions@16#. Figure 4 shows the
results of these calculations. The top portion of Fig. 4 giv
the computed transition profile, the graph of the ensem
average probabilitypl of denaturation versus positionl. The
bottom graph depicts the variation of the destabilization f
energyDG( l ) with position, as calculated frompl using Eq.
~47!. The bars denote the locations where denaturation
been experimentally determined to occur@48#.

Denaturation under these conditions was found exp
mentally to be confined to two locations. The primary loc
tion is between positions 3181 and 3300, coincident with

ion

-
d

ta-

FIG. 4. The top graph shows the ensemble average probab
of denaturation of each base pair in the pBR322 DNA molec
~4363 bp!, on which a linking difference ofa5227 turns is im-
posed. The exact algorithm was used in this calculation. The bot
graph plots the ‘‘free energy’’ of denaturationDG( l ) vs positionl,
computed using Eq.~47!. The sites where denaturation is expe
mentally observed to occur are denoted by bars. The prediction
these calculations are in precise quantitative accord with exp
mental observations, as described in the text.
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terminator of theb-lactamase gene. The secondary locat
is between positions 4130 and 4250, at the promoter of
same gene. The amount of denaturation detected at the
ondary site was 7% of that found at the primary site. T
predictions of the exact method, like those of the previou
developed approximate method, are in precise quantita
agreement with these experimental results. Transition is
dicted to be confined to these two sites. Moreover, the a
under the transition probability curve in these regions, wh
give the expected number of denatured base pairs in e
agree with the relative amounts of denaturation experim
tally observed there. This shows that the exact method
veloped here, applied to the model of Eq.~17! with no ad-
justable parameters, can provide quantitatively corr
predictions of the denaturation behavior of DNA under t
conditions of the nuclease digestion procedure by which
experimentally detected@48#. It also suggests that the site
that are destabilized by superhelical stresses do not occ
random, but rather coincide with specific regulatory regio

Comparison with in vivo results

Calculations performed using a previously developed,
proximate, method have demonstrated close association
tween stress-destabilized sites and several specific class
regulatory regions@1,28#. Experiments have established th
stress-induced denaturation does occurin vivo @19#. Here we
assess the accuracy of the presently developed techniq
predicting in vivo stress-induced denaturation by analyzi
the 4-kb region containing the yeast FBP1 gene seque
used in these experiments. We note that this region is
circular in vivo. However, because the superhelical constra
of imposed linking difference is functionally identical in ci
cular and in looped domains, one can treat regions that
not circular by a simple modification of the approach p
sented above. One simply conceptually closes the region
a circle by connecting its ends with a short run ofGC base
pairs, and then imposes a linking difference on the resul
domain. If the region were circularized by directly joining i
ends instead of connecting them with an insert, one wo
run the risk of creating a spurious susceptible site in ca
where the ends were reasonablyA1T rich. A G1C-rich
insert is chosen because it has a high energy of denatura
and hence will join the ends without either assisting th
destabilization or itself constituting an introduced desta
lized site. @Alternatively, one can join the two ends wit
a base pair which is constrained to remain closed~bonded!.#

The results of this analysis, applied to the model of E
~17!, are shown in Fig. 5. Here the linking difference s
lected is that which gives the level of torsional stress fou
in extracted plasmids. The bar denotes the region where
naturation was experimentally detectedin vivo. One sees tha
this analysis provides a quantitatively precise depiction
the denaturation experienced in this region, even though
in vivo conditions are much more complex than those en
sioned in the present model.

To determine what effect the alternative methods of tre
ing the twistst j might have on the results, sample calcu
tions using each assumption were performed on this
quence. In case~1! thet j ’s are assumed all to have the sam
value t, which equilibrates with the residual superhelici
n
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a r . This was the assumption made in the previously dev
oped, approximate method@5#. In case~2! the t j ’s can fluc-
tuate independently. Figure 6 shows the profiles calculate
these two cases. The differences between the two profiles
quite slight, and are confined to the boundaries of the de
turing region.

All the locations that denature in the two sequences a
lyzed in this section serve important regulatory functions.
the pBR322 plasmid denaturation is confined to two regio
the terminator and the promoter of theampr gene. In the
yeast sequence denaturation occurs only at the termina
gion of the FBP1 gene. These and many other results s
that sites of stress-induced destabilization are closely ass
ated with several types of regulatory regions@1,28,21#. This
suggests that the interplay between base sequence and
sional stress provides a biologically important mechani
for regulatory activity.

DISCUSSION

This paper presents a method for calculating equilibri
local denaturation~strand separation! properties of superhe
lical DNA having kilobase lengths and specified sequenc
The effective Hamiltonian includes the energies of dena
ation of theAT and GC base pairs, the energies associa
with the torsional deformations of the denatured regions,
interactions between denaturation and torsional deformat
induced by the topological constraint of constant linki
numberL. The partition function and ensemble averages
calculated in a formally exact manner from the states of
system and their given energies. Through the introduction
auxiliary variables, the calculations can be implemented
an algorithm that is stable and has quadratic complexity w
molecular lengthN. The computations can require relative
long execution times, however, since they must in genera
implemented in arbitrary precision. An accelerated algorit

FIG. 5. The top graph shows the ensemble average probab
of denaturation of each base pair in the 4 kb region of yeast D
containing the FBP1 gene sequence. A linking difference of222
turns was assumed, which gives the level of stress commonly fo
in DNA that has been extracted from living cells. The lower gra
shows a detailed view of the region where denaturation is predi
to occur. In both graphs the bar indicates the region where dena
ation is experimentally detected.
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was also developed which treats only states in which fe
thanM base pairs are separated, and rigorous bounds on
resulting systematic error were established. This alterna
method hasO(MN) complexity, although it still must be
implemented in multiprecision arithmetic. It typically give
highly accurate results with modest choices ofM (M
'0.05N), and can execute a realistic problem in less th
one hour on a fast RISC-based work station. Calculations
additional linking numbersL can be obtained at a low incre
mental cost,O(M2) for each.

The methods developed here can be applied either to
cular or, by a simple modification, to looped domains wh
are not topologically circular. Comparison with experimen
indicates that this method, with no adjustable paramet
can provide quantitatively precise predictions for the lo
tions and extents of superhelical DNA denaturation, bothin
vitro and in vivo.

Our approach has numerous advantages over the o
techniques that have been previously used to treat super
cal denaturation. First, it correctly includes the topologi
constraint imposed by the domain structure, be it circula
looped, which is the fixing of the linking numberL. Second,
it permits the two inherently flexible single strands compr
ing a separated region to twist around each other. In
paper we present two levels of detail with which this twisti
can be treated—either as a mechanical equilibrium torsio
deformation or as a locally fluctuating quantity. Sample c
culations show that these two alternatives give very sim
results. Third, the approach correctly includes the ex
contributions from all states, weighted according to th
Boltzmann factors. As this is the only method able to eva
ate the exact equilibrium distribution in polynomial time,
clearly improves on other techniques which either calcu
an approximation of, or only sample from, that distributio

This exact method can also treat many types of interes
cases that the other approximate methods, as presently
mulated, cannot handle. These include near-neighbor
pair identity effects and alterations in the energies of b
pair separation that result from such events as base met
tion, protein or ligand binding, or the presence of pyrimidi
dimers or abasic sites. Structural alterations that decreas
energies of denaturation of the base pairs involved have b
predicted to significantly affect the transition behavior
stressed DNA@50#. The method can treat cases where one
more of the base pairs is externally constrained to rem
open or closed, and is applicable to transitions at any t
perature.

The approach presented in this paper can easily be
tended to include the possibility of other competing tran
tions, such as cruciform extrusion at inverted repeat
quences, orZ-DNA or H-DNA formation at sites having the
n
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local base sequences required by these alternate confo
tions. An analysis in whichc different conformations com-
pete requiresc3c transfer matrices. However, at prese
there is no compelling experimental evidence to suggest
transitions to any DNA conformations other than local den
turation serve biological functions; and, in any case, the
ergetics of these alternative transitions are not now kno
with sufficient precision to enable quantitatively accura
predictions of multistate competing transitions to be mad

This approach also can be easily extended to include
possibility of a sequence-dependent nucleation energa
@32#. This could be important, for example, when analyzi
the effects of the presence of abasic sites on transitions.

Future work will include the application of this method
a variety of DNA sequences for comparison with experime
tal data. The possibly important effects of various types a
locations of defects, as mentioned above, will also be
plored.
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FIG. 6. Sample calculations were performed on the yeast FB
gene region to determine the effect of the different ways used
treat the twistst j in the denatured regions. In case~1!, all t j ’s have
the same value, the one which minimizes the Hamiltonian. In c
~2!, thet j ’s are allowed to fluctuate independently. The results fro
case~1! are plotted with a solid line, and those from case~2! with a
dashed line. There are very slight differences between the two
sults, which are confined to the edges of the denatured region.
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